Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

catena-Poly[[[bbis(N, N^{\prime}-diphenylthiourea)cadmium(II)]-di- μ-thiocyanato] dihydrate]

Zhu, Yang, Chen and Ng

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[[[bis(N, N^{\prime}-diphenylthio-urea)cadmium(II)]-di- μ-thiocyanato] dihydrate]

Huai-Gang Zhu, ${ }^{\text {a }}$ Guang Yang, ${ }^{a}$ Xiao-Ming Chen ${ }^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: h1nswen@umcsd.um.edu.my

Received 31 July 2000
Accepted 29 August 2000

Data validation number: IUC0000231
Bridging by the two thiocyanato groups in centrosymmetric six-coordinate bis(thiocyanato)bis(diphenylthiourea)cadmium(II) dihydrate leads tothe formation of eight-membered $[\mathrm{Cd}-\mathrm{SCN} \rightarrow \mathrm{Cd}-\mathrm{SCN} \rightarrow]$ rings that are linked at the metal atom to furnish chains running parallel to the a axis, i.e $\left\{\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$.

Comment

In cadmium thiocyanate, briding by both pseudohalide groups leads to the formation of eight-membered rings that are connected through the Cd atoms, which show trans $-\mathrm{N}_{2} \mathrm{~S}_{4}$ octahedral coordination (Cannas et al., 1976). In the $1 / 2$ complexes with sulfur-donor ligands, the Cd atoms retain such a coordination characteristic, as noted in the bis(ethylene)thiourea complex (Cavalca et al., 1960). The phenylthiourea complex of cadmium thiocyanate displays a one-dimensional chain structure, whereas the cadmium chloride complex exists as a monomeric entity (Yang et al., 2000). Replacing the

(I)
phenylthiourea ligand by the somewhat bulkier diphenylthiourea (DPTU) donor ligand leads to the formation of a similar chain motif; however, the title compound, (I), crystallizes with lattice water that only weakly holds the chains together. There is only one hydrogen bond from the water
molecule to an N atom of the DPTU ligand.
The Cd atom is octahedrally coordinated by two S atoms of two monodentate DPTU ligands, two S atoms of two thiocyanato anions, and two N ends of other thiocyanate anions. The bridging behavior of the thiocyanate group in the formation of eight-membered rings has been documented in other systems (Chen et al., 1999; Ram et al., 1981; Taniguchi \& Ouchi, 1987). The $\mathrm{Cd}-\mathrm{S}$ and $\mathrm{Cd}-\mathrm{N}$ bond distances fall within the ranges reported for other octahedral cadmiumthiocyanate complexes (Bigoli et al., 1972; Cavalca et al., 1960; Chen et al., 1999; Ram et al., 1981; Taniguchi \& Ouchi, 1987; Tian et al., 1997; Yang et al., 2000).

Experimental

$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.31 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{KSCN}(\mathrm{O} .17 \mathrm{~g}, 2 \mathrm{mmol})$ and diphenylthiourea ($0.46 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in a small volume of ethanol. The mixture was heated until the white material which formed was completely dissolved. After filtration, the solution was allowed to evaporate slowly; crystals deposited after several days.

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=721.20$
Monoclinic, $P 2_{1} / c$
$a=5.643(2) \AA$ 。
$b=15.625$ (8) \AA
$c=17.641$ (8) \AA
$\beta=89.98(4)^{\circ}$
$V=1555(1) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=7-15^{\circ}$
$\mu=1.007 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Parallelepiped, colorless
$0.40 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Siemens $R 3 m$ four-circle diffract-
$R_{\text {int }}=0.028$
ometer
ω scans
$\theta_{\text {max }}=28.91^{\circ}$
$h=0 \rightarrow 7$
Absorption correction: empirical
via ψ scans (North et al., 1968)
$T_{\text {min }}=0.609, T_{\text {max }}=0.676$
4131 measured reflections
3765 independent reflections
2848 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.097$
$S=1.037$
3765 reflections
188 parameters
H -atom parameters constrained
$k=0 \rightarrow 20$
$l=-24 \rightarrow 23$
2 standard reflections every 120 reflections intensity decay: none

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.491(3)$	$\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{iii}}$	$2.769(2)$
$\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{ii}}$	$2.491(3)$	$\mathrm{Cd} 1-\mathrm{S} 2$	$2.589(1)$
$\mathrm{Cd} 1-\mathrm{S} 1$	$2.769(2)$	$\mathrm{Cd} 1-\mathrm{S} 2^{\mathrm{iii}}$	$2.589(1)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{iii}}$	180	$\mathrm{~S}^{\mathrm{iiii}}-\mathrm{Cd} 1-\mathrm{S} 1$	$94.2(1)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 2^{\mathrm{iii}}$	$96.4(1)$	$\mathrm{S} 2-\mathrm{Cd} 1-\mathrm{S} 1$	$85.8(1)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{S} 2^{\mathrm{iii}}$	$83.7(1)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{iii}}$	$95.3(1)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 2$	$83.7(1)$	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{iii}}$	$84.7(1)$
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{S} 2$	$96.4(1)$	$\mathrm{S} 2^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{iii}}$	$85.8(1)$
$\mathrm{S} 2^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{S} 2$	180	$\mathrm{~S} 2-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{iii}}$	$94.2(1)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{C} 11-\mathrm{S} 1$	$84.7(1)$	$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{iii}}$	180
$\mathrm{~N} 1^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{S} 1$	$95.3(1)$		

Symmetry codes: (i) $1+x, y, z$; (ii) $-x, 1-y, 1-z$; (iii) $1-x, 1-y, 1-z$.

Although the β angle is almost 90°, the cell is not orthorhombic. The checking program PLATON (Spek, 1990) did not find a symmetry higher than orthorhombic; indeed, if the data were averaged in an orthorhombic setting, the $R_{\text {int }}$ exceeded 0.2. As a TWIN (a, $-b,-c$) instruction did not lower the R index much, its use was discarded. H atoms were placed in calculated idealized positions and allowed to ride on their attached non-H atoms ($\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93 \AA$). The water H atoms were placed at calculated positions using the HYDROGEN (Nardelli, 1999) option in the WinGX suite (Farrugia, 1999). The slightly low completeness of the reflection data, 91.7%, is due to the incompleteness of the region of $25<\theta<28.91^{\circ}$.

Data collection: R3m Software (Siemens, 1990); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the National Natural Science Foundation of China (Nos. 29625102 and 29971033) and the Higher Education Bureau of Guangdong Province. The data were collected on a diffractometer donated by the

Chemistry Department of the Chinese University of Hong Kong.

References

Bigoli, F., Braibanti, A., Pellinghelli, M. A. \& Tiripicchio, A. (1972). Acta Cryst. B28, 962-965.
Cannas, M., Carta, G., Cristini, A. \& Marongiu, G. (1976). J. Chem. Soc. Dalton Trans. pp. 300-301.
Cavalca, L., Nardelli, M. \& Fava, G. (1960). Acta Cryst. 13, 125-128.
Chen, H.-J., Yang, G. \& Chen X.-M. (1999). Acta Cryst. C55, 2012-2014.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ram, G. G., William, P. H., Marc, J. O. \& Andre, L. B. (1981). Inorg. Chem. 20, 3924-3928.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1990). R3m Software. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Taniguchi, M. \& Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 4172-4174.
Tian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. \& Zhang, Z.-Z. (1997). Inorg. Chem. 36, 1247-1252.

Yang, G., Liu, G.-F., Zheng, S.-L. \& Chen, X.-M. (2000). J. Coord. Chem. Submitted.

[^0]: (C) 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

